Let it be sexual: how health care transmission of AIDS in Africa was ignored

David Gisselquist PhD1, John J Potterat BA2, Stuart Brody PhD3
and François Vachon MD4

1Hershey, PA, 2Colorado Springs, Colorado, USA, 3Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Germany and 4University of Paris 7, France

Summary: The consensus among influential AIDS experts that heterosexual transmission accounts for 90% of HIV infections in African adults emerged no later than 1988. We examine evidence available through 1988, including risk measures associating HIV with sexual behaviour, health care, and socioeconomic variables, HIV in children, and risks for HIV in prostitutes and STD patients. Evidence permits the interpretation that health care exposures caused more HIV than sexual transmission. In general population studies, crude risk measures associate more than half of HIV infections in adults with health care exposures. Early studies did not resolve questions about direction of causation (between injections and HIV) and confound (between injections and STD). Preconceptions about African sexuality and a desire to maintain public trust in health care may have encouraged discounting of evidence. We urge renewed, evidence-based, investigations into the proportion of African HIV from non-sexual exposures.

Keywords: HIV, Africa, nosocomial, iatrogenic, risk factors

Introduction

The conventional wisdom that heterosexual transmission accounts for most adult HIV infections in Africa emerged as a consensus among influential HIV/AIDS experts no later than 1988. In that year, the World Health Organization’s (WHO) Global Program on AIDS circulated estimates that 80% of HIV infections in Africa was due to heterosexual transmission, 10.8% was from mother-to-child transmission, 6% from blood transfusions, 1.6% from contaminated medical injections and other health care procedures, and 1.6% from men who have sex with men (MSM) and injection drug use (IDU)1. In the same year, experts from Zaire’s National AIDS Control Program and the United States (US) Centers for Disease Control published comparable estimates2. By mid-1989, an overview of global HIV epidemiology by leading AIDS experts at the Fifth International Conference on AIDS, did not even mention medical injections as a risk for HIV3.

If experts had treated the consensus as an hypothesis—which it was and still is—and had used it to guide research to test competing hypotheses, it could have played a constructive role. Unfortunately, many experts have accepted the consensus as fact, and have not seen any need for further research to test its estimates. The result has been that the consensus has suppressed inquiry and dissent. Hence, from 1988 the consensus has been self-reinforcing, as researchers in Africa—and in Asia and the Caribbean—have often assumed sexual transmission without testing partners, without asking about health care exposures, and when conflicting evidence nevertheless emerges—such as infected adults who deny sexual exposures to HIV—routinely rejecting it.

From the beginning, AIDS in Africa has been a puzzle. In 1983, physicians in France and Belgium reported AIDS diagnoses in African men and women seeking health care in Europe4–6. Initial hospital-based surveys in Kinshasa, Zaire (now Democratic Republic of the Congo [DRC]), and Kigali, Rwanda, in late 1983 reported an AIDS incidence comparable to large US cities, with cases evenly distributed between men and women, and without notable representation by MSM or IDU7,8. In contrast, in the US through late 1983 less than 1% of 2800 AIDS cases were diagnosed in heterosexual partners of persons in high risk groups (MSM, IDU, and recipients of blood products), and there were 14 men for every woman with AIDS9.

During 1983–1988 experts debated the relative importance of health care versus heterosexual transmission in Africa10–14. A meeting convened by WHO in late 1983 identified unsafe injections and transfusion of untested blood as risks in tropical countries and was undecided about
Table 1. Risk factors for HIV from studies 1984–1988 among general population groups, inpatients and outpatients, and high-risk men

<table>
<thead>
<tr>
<th>Country, year, reference</th>
<th>Sample: cases/total</th>
<th>Exposure</th>
<th>Reporting period</th>
<th>PAF (%)</th>
<th>RR</th>
<th>APAF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General population studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congo, 1987–88<sup>18</sup></td>
<td>W at mother and child clinics: 71/1,833</td>
<td>Transfusion</td>
<td>8 yrs</td>
<td>2.8</td>
<td>3.24</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Induced abortion</td>
<td>Ever</td>
<td>16</td>
<td>1.66</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 1 sex partner<sup>1</sup></td>
<td>1 yr</td>
<td>11</td>
<td>1.79</td>
<td>8</td>
</tr>
<tr>
<td>DRC, 1984<sup>19</sup></td>
<td>Hospital workers: 152/2,384</td>
<td>Injections</td>
<td>3 yrs</td>
<td>81</td>
<td>1.83</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transfusions</td>
<td>10 yrs</td>
<td>5.1</td>
<td>1.90</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scarification</td>
<td>3 yrs</td>
<td>5.0</td>
<td>1.12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foreign travel</td>
<td>10 yrs</td>
<td>16</td>
<td>1.24</td>
<td>4</td>
</tr>
<tr>
<td>DRC, 1984–86<sup>20</sup></td>
<td>Hospital workers: 62/1,905</td>
<td>Injections</td>
<td>INC</td>
<td>73</td>
<td>1.54</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transfusion</td>
<td>INC</td>
<td>2.0</td>
<td>4.54</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scarification</td>
<td>INC</td>
<td>4.0</td>
<td>0</td>
<td><0</td>
</tr>
<tr>
<td>DRC, 1987–88<sup>21</sup></td>
<td>Workers and wives: 411/11,616</td>
<td>Transfusions</td>
<td>5 yrs</td>
<td>3.3</td>
<td>2.33</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Workers: 236/7,068</td>
<td>Sex w/prostitute</td>
<td>1 yr</td>
<td>29</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 0 nonmarital sex partners<sup>1</sup></td>
<td>2 yrs</td>
<td>23</td>
<td>1.36</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GU</td>
<td>5 yrs</td>
<td>7.6</td>
<td>2.72</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urethritis</td>
<td>5 yrs</td>
<td>13</td>
<td>1.83</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Workers’ wives: 175/4,548</td>
<td>Induced abortion</td>
<td>5 yrs</td>
<td>4.1</td>
<td>2.34</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 1 sex partner<sup>1</sup></td>
<td>1 yr</td>
<td>0.7</td>
<td>4.29</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GU</td>
<td>5 yrs</td>
<td>14</td>
<td>2.41</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Injections (all)</td>
<td>2 yrs</td>
<td>77</td>
<td>2.42</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Injections (for STD only)</td>
<td>2 yrs</td>
<td>30</td>
<td>2.23</td>
<td>27</td>
</tr>
<tr>
<td>Rwanda, 1985<sup>22</sup></td>
<td>Hospital and urban workers: 80/452</td>
<td>Transfusions</td>
<td>5 yrs</td>
<td>4.0</td>
<td>3.44</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STD</td>
<td>2 yrs</td>
<td>44</td>
<td>2.1</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Urban working men: 52/302</td>
<td>Scarification</td>
<td>2 yrs</td>
<td>15</td>
<td>0.62</td>
<td><0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not circumcised</td>
<td>Current</td>
<td>90</td>
<td>0.89</td>
<td><0</td>
</tr>
<tr>
<td>Rwanda, 1985<sup>23</sup></td>
<td>Rural A: 7/206</td>
<td>Transfusions</td>
<td>5 yrs</td>
<td>0</td>
<td>Und</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STD</td>
<td>2 yrs</td>
<td>11</td>
<td>11.2</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travel to an urban centre</td>
<td>5 yrs</td>
<td>12</td>
<td>18.1</td>
<td>67</td>
</tr>
<tr>
<td>Rwanda, 1986<sup>24</sup></td>
<td>M in HIV+/+ vs HIV-/+ couples: 124/150</td>
<td>Transfusions</td>
<td>2 yrs</td>
<td>1</td>
<td>1.21</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STD</td>
<td>2 yrs</td>
<td>15</td>
<td>10.1</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not circumcised</td>
<td>Current</td>
<td>70</td>
<td>1.04</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travel in Rwanda</td>
<td>2 yrs</td>
<td>30</td>
<td>1.47</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>W in HIV+/+ vs HIV-/+ couples: 124/150</td>
<td>Transfusions</td>
<td>2 yrs</td>
<td>4</td>
<td>2.34</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STD</td>
<td>2 yrs</td>
<td>11</td>
<td>7.10</td>
<td>41</td>
</tr>
<tr>
<td>Rwanda, 1988<sup>25</sup></td>
<td>ANC and paediatric clinic W: 32%/1,428</td>
<td>Transfusions</td>
<td>Ever</td>
<td>6.8</td>
<td>1.43</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 1 sex partner<sup>1</sup></td>
<td>Ever</td>
<td>32</td>
<td>1.89</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STD</td>
<td>5 yrs</td>
<td>17</td>
<td>2.06</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partner not circumcised</td>
<td>Current</td>
<td>66</td>
<td>1.07</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Good income<sup>**</sup></td>
<td>Current</td>
<td>55</td>
<td>1.45</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Own education > 4 yrs</td>
<td>Current</td>
<td>62</td>
<td>1.11</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partner’s education > 4 yrs</td>
<td>Current</td>
<td>81</td>
<td>1.82</td>
<td>40</td>
</tr>
<tr>
<td>Tanzania, 1987<sup>26</sup></td>
<td>Urban GP A: 134/533</td>
<td>Injections</td>
<td>8 yrs</td>
<td>90</td>
<td>3.0</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transfusions</td>
<td>8 yrs</td>
<td>5.6</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 1 sex partner</td>
<td>8 yrs</td>
<td>77</td>
<td>1.7</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travel out of region</td>
<td>8 yrs</td>
<td>61</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rural GP A: 86/1,744</td>
<td>Injections</td>
<td>8 yrs</td>
<td>79</td>
<td>2.6</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transfusions</td>
<td>8 yrs</td>
<td>3.7</td>
<td>3.8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 1 sex partner</td>
<td>8 yrs</td>
<td>55</td>
<td>2.3</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travel out of region</td>
<td>8 yrs</td>
<td>26</td>
<td>1.7</td>
<td>16</td>
</tr>
<tr>
<td>Uganda, 1987<sup>27</sup></td>
<td>GP A: 417/3,879</td>
<td>Injections</td>
<td>1 yr</td>
<td>66</td>
<td>1.68</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STD</td>
<td>5 yrs</td>
<td>20</td>
<td>1.64</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>GP M: 158/1,799</td>
<td>> 1 sex partner</td>
<td>6 mos</td>
<td>41</td>
<td>1.22</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>GP W: 262/2,091</td>
<td>> 1 sex partner</td>
<td>6 mos</td>
<td>13</td>
<td>1.67</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Zambia, 1987<sup>28</sup></td>
<td>W at childbirth: 227/1,954</td>
<td>Transfusions</td>
<td>Ever</td>
<td>8.2</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 1 sex partner</td>
<td>Ever</td>
<td>54</td>
<td>1.27</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GU</td>
<td>Ever</td>
<td>1.0</td>
<td>1.73</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travel abroad</td>
<td>Ever</td>
<td>11</td>
<td>1.65</td>
<td>6</td>
</tr>
</tbody>
</table>

continued
Table 1: Continued

<table>
<thead>
<tr>
<th>Country, year, reference</th>
<th>Sample: cases/total</th>
<th>Exposure</th>
<th>Reporting period</th>
<th>PAF</th>
<th>APAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zambia, 1987–88<sup>29</sup></td>
<td>Postpartum W: 16/634</td>
<td>Transfusions</td>
<td>INC</td>
<td>1.4</td>
<td>9.79</td>
</tr>
<tr>
<td>Zimbabwe, 1987<sup>30</sup></td>
<td>Blood donor M: 69/119</td>
<td>Injections</td>
<td>Ever</td>
<td>95</td>
<td>3.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transfusions</td>
<td>Ever</td>
<td>6.7</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scarification</td>
<td>Ever</td>
<td>32</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sex w/prostitute</td>
<td>Ever</td>
<td>55</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STD</td>
<td>Ever</td>
<td>73</td>
<td>3.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travel outside</td>
<td>Ever</td>
<td>20</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zimbabwe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In and outpatient studies (except STD, pregnancy, and childbirth)

<table>
<thead>
<tr>
<th>Country, year, reference</th>
<th>Sample: cases/total</th>
<th>Exposure</th>
<th>Reporting period</th>
<th>PAF</th>
<th>APAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRC, 1984<sup>31</sup></td>
<td>Inpatients all ages: 17/236</td>
<td>Injections</td>
<td>3 yrs</td>
<td>90</td>
<td>Und</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transfusions</td>
<td>3 yrs</td>
<td>23</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scarification</td>
<td>3 yrs</td>
<td>17</td>
<td>6.34</td>
</tr>
<tr>
<td>DRC, 1984–85<sup>32</sup></td>
<td>Inpatients 2–14 yrs: 40/328</td>
<td>Injections</td>
<td>1 yr</td>
<td>82</td>
<td>4.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transfusions</td>
<td>Ever</td>
<td>33</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scarification</td>
<td>1 yr</td>
<td>20</td>
<td>1.32</td>
</tr>
<tr>
<td>DRC, 1985<sup>33</sup></td>
<td>Inpatients 1–24 mos w/HIV-mothers: 16/222</td>
<td>Transfusions</td>
<td>Ever</td>
<td>6.8</td>
<td>6.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scarification</td>
<td>Ever</td>
<td>15</td>
<td>0.38</td>
</tr>
<tr>
<td>DRC, 1986<sup>34</sup></td>
<td>In and outpatients 1–13 yrs: 31/812</td>
<td>Transfusions</td>
<td>Ever</td>
<td>14</td>
<td>15.6</td>
</tr>
<tr>
<td>DRC, 1988<sup>35</sup></td>
<td>Outpatients 1–13 yrs: 29/695</td>
<td>Transfusions</td>
<td>Ever</td>
<td>17</td>
<td>5.40</td>
</tr>
<tr>
<td>Rwanda, 1984–86<sup>36,37</sup></td>
<td>Inpatients 1–48 mos w/HIV-mothers: 18/61</td>
<td>Transfusions</td>
<td>Ever</td>
<td>6.6</td>
<td>9.07</td>
</tr>
<tr>
<td>Uganda, 1987<sup>38</sup></td>
<td>In and outpatients, mostly adults: 559/745</td>
<td>Injection in the market</td>
<td>S yrs</td>
<td>38</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Injections in medical facilities</td>
<td>S yrs</td>
<td>84</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Traditional skin piercing</td>
<td>S yrs</td>
<td>23</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travel w/in Uganda</td>
<td>S yrs</td>
<td>58</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sex w/prostitute</td>
<td>S yrs</td>
<td>25</td>
<td>1.25</td>
</tr>
<tr>
<td>Uganda, 1986<sup>39</sup></td>
<td>In and outpatient men: 10/76</td>
<td>Sex w/prostitute</td>
<td>S yrs</td>
<td>41</td>
<td>13.1</td>
</tr>
</tbody>
</table>

High risk men

<table>
<thead>
<tr>
<th>Country, year, reference</th>
<th>Sample: cases/total</th>
<th>Exposure</th>
<th>Reporting period</th>
<th>PAF</th>
<th>APAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiopia, 1988<sup>40</sup></td>
<td>Men in an Ethiopian prison: 27/450</td>
<td>Injections</td>
<td>S yrs</td>
<td>62</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>Sex w/prostitute</td>
<td>Ever?</td>
<td>64</td>
<td>2.45</td>
<td>48</td>
</tr>
<tr>
<td>Uganda, 1986<sup>41</sup></td>
<td>Drivers and turnboys: 24/68</td>
<td>Syphilis (VDRL)</td>
<td>Current</td>
<td>31</td>
<td>3.73</td>
</tr>
<tr>
<td></td>
<td>Syphilis (TPHA)</td>
<td>Ever</td>
<td>43</td>
<td>1.88</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>GU</td>
<td>Ever?</td>
<td>29</td>
<td>2.84</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>GD</td>
<td>Ever?</td>
<td>51</td>
<td>2.29</td>
<td>40</td>
</tr>
<tr>
<td>Sudan, 1987–88<sup>42</sup></td>
<td>Soldiers: 13/773</td>
<td>Sex w/prostitute</td>
<td>Ever</td>
<td>52</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>Ever</td>
<td>31</td>
<td>2.64</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Any HBV marker</td>
<td>Current</td>
<td>78</td>
<td>Und</td>
<td>100</td>
</tr>
</tbody>
</table>

^α = percent of total sample or cases exposed; RR = rate ratio; PAF = population attributable fraction; INC = observation interval in studies of HIV incidence; APAF = adjusted PAF; ANC = antenatal clinic; HBV = hepatitis B virus; STD = sexually transmitted disease; VDRL = veneral disease research lab test; TPHA = Treponema pallidum haemagglutination test; GU = genital ulcer; GD = genital discharge; GP = general population; M = men; W = women; A = adults; DRC = Democratic Republic of the Congo; Und = undefined

¹Case-control study or equivalent (e.g., studies in which all or many cases are inpatients), for which the table shows numbers of cases/controls, exposures among controls, OR instead of RR, and the PAF is approximated as (OR−1)/(1+OR−1)

²Adjusted for direction of causation by stratifying across symptoms. For hospital workers in DRC, the adjusted PAF is calculated after excluding six seroconverters with HIV-related symptoms. For hospital and urban workers in Rwanda, the adjusted RR for injections for STD is calculated among those reporting STD, and the table shows HIV infections associated with injections for STD as a per cent of all infections

³Adjusted for confound by stratified analysis. Adjusted RRs for STD are based on the difference in HIV prevalence between persons with and without STD and without injections (or without injections for STD); this RR is used to estimate the number of HIV infections associated with STD and the adjusted PAF for STD. Adjusted PAFs for injections are based on differences in HIV prevalence between persons with and without injections and STD. See further explanation in the text (Discussion). For Uganda, Konde-Lule et al. report numbers with and without STD, and of those figures, numbers without injections; our calculations assume that all others had 1 or more infections

⁴Adjusted for marriage, children, adjusted variables in the table, other variables. The APAF is estimated as APAF = PAF(AOR−1)/AOR(1−1)/OR, which assumes that the ratio PAF/APAF is equivalent to the ratio of PAF (≥ OR−1)/OR to APAF (≥ [AOR−1]/AOR)

⁵During the year before pregnancy

⁶Roughly 10% of the men were unmarried

⁷Partner's income > 10,000RWF/month (roughly $100/month)
heterosexual promiscuity as a risk. On the other hand, some influential early studies associated AIDS in Africans with large numbers of heterosexual partners: for example, three of seven Rwandan women with AIDS in a 1983 study were prostitutes and in another early study, 58 African men with AIDS symptoms reported a median of 32 sex partners per year.

Early findings on risk factors for AIDS in Africans may have been influenced by preconceptions about where to look. Through mid-1984, unavailability of serological tests for HIV and an unexpected mix of opportunistic infections in Africans with AIDS impeded epidemiological research. Discovery of the lymphadenopathy associated virus (later renamed human immunodeficiency virus [HIV]) in 1983 led to reliable laboratory markers of infection and—despite some early problems with false positive results—much better information on risk factors for HIV in Africa.

In this communication we document premature closure of the debate about the relative importance of heterosexual and health care exposures to Africa’s HIV/AIDS epidemic. We show that epidemiological evidence from field studies completed through 1988 allowed that health care transmission was not only significant, but might well have been responsible for more HIV than heterosexual (hereafter sexual) transmission, and we discuss how this evidence might have been ignored. (Since Africa has many formal and informal health care providers and settings, we use the terms iatrogenic and nosocomial to refer to infections from all providers and all settings—not only doctors and hospitals.)

Methods

Using Medline and other bibliographic resources, we searched for articles in refereed medical journals on HIV epidemiology in Africa based on field research completed through 1988. We include all identified studies conducted among general population groups, patients, and high risk men (eg, truck drivers) that provide data to calculate population attributable fractions (PAFs) of HIV-associated risks. For these studies, we calculate and report all available PAFs for HIV associated with medical injections, blood transfusions, induced abortion, scarification, more than one sexual partner, prostitute contact, sexually transmitted disease (STD), lack of circumcision, and selected socioeconomic variables. From these papers, we summarize all information on distribution of HIV in general population adults according to sexual activity. From these studies and others, we present selected information on HIV in children. We also include all identified studies of prostitute women and STD patients, for which we report all available information on injections and selected information on sexual and other risk variables. Although we have undoubtedly missed some studies, and although we exclude conference abstracts, the internal consistency of the evidence we present suggests that further research into pre-1988 knowledge about HIV epidemiology in Africa will not change any of the major elements of our analysis.

Results

PAFs from studies of general population, hospital, and high risks samples and cohorts

Eleven prevalent and two incident studies of risk factors for HIV in samples and cohorts from the general population (eg, general population, blood donors, postpartum women) with field research completed through 1988 provide data to calculate PAFs for one or more risks (Table 1). In summary, seven PAFs for HIV associated with injections (two of which are adjusted; see notes to Table 1) average 48%; these and other studies show high rates of exposure to medical injections. The 14 available PAFs for risk by blood transfusion average 5%. Four PAFs for scarification range from <0% to 23% and average 6%. The nine PAFs reflecting risk for reporting more than one sexual partner average 16%. The three PAFs for contact with prostitute women average 36% (range: 8–71%). Lastly, the 12 PAFs for reported or diagnosed STD (2 of which are adjusted; see notes to Table 1) average 27%. Thus the largest average PAF, 48%, is for medical injections.

Nine studies of risk factors for HIV among inpatients and outpatients (except parturient women included in general population studies and STD patients considered below) present sufficient data to calculate PAFs for prevalent HIV for one or more variables (Table 1). Again, the average of four PAFs for medical injections is high, 45% (setting the one negative PAF to 0), while the average of 6 PAFs for blood transfusions is also high, 42%. Four PAFs for scarification range from <0% to 48%. Two PAFs for contact with prostitutes are 6% and 83%. Finally, data from three studies of high risk men (soldiers, prisoners, and truck drivers and helpers) provide two PAFs for prostitute contact of 48% and 52% and five PAFs for reported or diagnosed STD average 36%.

Overall, crude PAFs from general population studies through 1988 suggest that medical exposures were responsible for more African HIV than sexual exposures. Importantly, PAFs point to injections—not blood transfusions—as the main health care risk. In addition, early studies also suggest high risk associated with prostitute contact and STD. Considering that many of the PAFs for HIV prevalence recorded in Table 1 were calculated from exposures spanning the previous one to five years, they fail to reflect risks for HIV
Field studies completed through 1988 indicated contracted before this reporting period; hence, some PAFs may be misleadingly low. On the other hand, as discussed in a later section, PAFs for injections and STD may be inflated by reverse causation (ie, people with HIV symptoms seeking injections, and people with weakened immune systems having more STD), and PAFs for STD and prostitute contact may be inflated by confound with injections to treat STD.

HIV distribution according to sexual behaviour in general population studies

STD transmission is associated with core groups, ie, a small proportion of individuals that account for most of the STD burden. One would expect that, insofar as HIV is sexually transmitted, the distribution of HIV would show the same pattern. Yet, most studies that reported the distribution of HIV among adults in the general population showed little concentration according to sexual activity (Table 2). Most studies showed a majority—often a large majority—of prevalent HIV infections in both men and/or women with 0–1 partners in the reporting interval (from six months to lifetime). Notably, data in Table 2 show no obvious trend for greater concentration according to sexual activity in communities with lower prevalence and hence supposedly earlier epidemics (when core groups were supposed to account for more infections).

For example, in a 1987–88 study of factory and bank workers and their wives in Kinshasa, the 99% of wives who reported no non-marital sex in the previous 12 months had 97% of HIV in wives. Among men, the 71% who claimed no non-marital partners in the last year had 61% of HIV in men, while the 2.3% reporting five or more non-marital partners in the last year had 61% of HIV in men, while the 2.3% reporting five or more non-marital partners had only 5.4% of HIV in men (10% of men who were not married may have accounted for some non-marital partners). Although some women probably contracted HIV from non-marital partners and subsequently transmitted the infection to their wives, crude PAFs for HIV in men associated with any non-marital sex and prostitute contact in the previous two years—15% and 8%, respectively—were too low for this to explain more than a fraction of infections in men or their wives; furthermore, in nearly half (90/204) of serodiscordant couples, the wife was the HIV-infected partner.

Finally, in a study of HIV prevalence in couples in Rwanda, 15 of 25 women with HIV and HIV-negative husbands reported one lifetime sex partner only. Although some adults may have under-reported numbers of sexual partners, the consistency of the evidence suggests a large majority of HIV infections in non-promiscuous adults, and little concentration in the general population according to sexual activity.

HIV associated with socioeconomic variables

Field studies completed through 1988 indicated that HIV prevalence was often associated with
urban residence, education, travel, and other socioeconomic variables reflecting higher status. For example, Rwanda’s 1986 national survey reported an HIV prevalence of 18% in urban areas compared to 1.3% in the countryside. A 1987 study in Kagera District, Tanzania, reported 24% adult HIV prevalence in Bukoba town, 10% in adjacent rural, and 0.4% in remote rural, areas.

A 1988 study in Rwandan women showed PAFs for prevalent HIV of 7% for educational attainment exceeding four years and 40% for husband’s education exceeding four years. The average of seven PAFs for HIV associated with travel in general population studies was 15% (Table 1). A 1984 seroprevalence survey among employees at Mama Yemo Hospital in Kinshasa found 9.2% HIV prevalence among high-level administrators compared to 6.4% for all employees. In two businesses in Kinshasa in 1987, HIV prevalence was greater in higher paid employees than in manual labourers (6.8% compared to 4.2% in one business; 4.6% compared to 2.8% in the other).

Presumably, associations between variables measuring socioeconomic status and HIV are due to correlations between status and sexual and/or medical exposures. Without empiric determination of such correlations, experts in the late 1980s speculated that differences in sexual behaviour according to status explained the associations. Since STD have long been associated with lower socioeconomic and educational attainment, it was at least equally plausible that associations between high status and HIV pointed to differences in health care rather than sexual behaviour.

HIV in children

Through 1988, a number of hospital- and community-based studies reported HIV infections in children that could not reasonably be attributed to vertical transmission. In 1985, Mann and colleagues in Kinshasa found 17 (39%) of 44 HIV-positive inpatient and outpatient children 1–24 months old to have HIV-negative mothers (C+M- children). In a case–control study of risk factors for HIV—with C+M- cases and C-M- controls (ie, uninfected children and mothers)—the PAF for transfusions was 26% (Table 1), and C+M- children averaged 44 lifetime injections compared to 23 for C-M- children. During 1984–86, Lepage and colleagues found that 18 (24%) of 76 children 1–48 months old with symptomatic HIV infections at a hospital in Rwanda had HIV-negative mothers.

In a similar case–control study, the PAF for blood transfusions was 35%, while C+M- children averaged 23 lifetime injections compared to 16 for C-M- children. (The authors argued that injections were not a risk, proposing that mothers who tested negative may have been infected. On re-testing, three of 12 initially HIV-negative mothers were HIV-positive, leaving 15 [20%] of 76 HIV-positive children with HIV-negative mothers.) Since these studies took place in hospitals with ongoing HIV research, health care providers may have taken more care to ensure sterile practices than providers in other health care settings with less attention to HIV. On the other hand, risks for children in these studies may have been higher than for rural children not subject to so many invasive medical procedures.

Many other studies reported HIV in children without, unfortunately, testing mothers. Even so, HIV in African children between the ages of five and 14 probably indicates some non-vertical transmission because low adult prevalence prior to the late 1980s and high mortality in HIV-infected children argues against vertical aetiology. In a study at Mama Yemo Hospital in Kinshasa in 1984–85, 11% of paediatric inpatients 2–14 years old were HIV-positive. Other studies during 1984–88 reported HIV in children in the general population (Table 3). If we consider that children 0–15 years old comprise roughly half of African populations, even low rates of HIV prevalence in children can point to significant numbers of infections. For example, data from a 1984–85 survey in Kinshasa suggest that infected children 2–14 years old had one-eighth of all HIV infections in persons aged two years and older (see Table 3; calculating that 40% of DRC’s population was 2–14 years old compared to 52% aged 15 years and older).

Table 3. HIV in children and adults in selected population-based studies, 1976–1988

<table>
<thead>
<tr>
<th>Country, location, year</th>
<th>Ages</th>
<th>% HIV+ (HIV+/tested)</th>
<th>Ages</th>
<th>% HIV+ (HIV+/tested)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rwanda, urban, 1986</td>
<td>6–15</td>
<td>4.2 (10/238)</td>
<td>>15</td>
<td>20.8 (308/1,484)</td>
</tr>
<tr>
<td>Rwanda, rural, 1986</td>
<td>6–15</td>
<td>1.7 (2/115)</td>
<td>>15</td>
<td>1.5 (8/518)</td>
</tr>
<tr>
<td>DRC, rural, 1976</td>
<td>5–14</td>
<td>0.6 (1/160)</td>
<td>>14</td>
<td>1.1 (5/447)</td>
</tr>
<tr>
<td>DRC, Kinshasa, 1984–85</td>
<td>2–14</td>
<td>1.3 (3/230)*</td>
<td>>14</td>
<td>6.5 (287/4,449)*</td>
</tr>
<tr>
<td>Tanzania, urban Kagera,</td>
<td>5–14</td>
<td>1.9 (4/215)</td>
<td>>14</td>
<td>24.2 (132/553)</td>
</tr>
<tr>
<td>Tanzania, rural Kagera,</td>
<td>5–14</td>
<td>0.2 (2/985)</td>
<td>>14</td>
<td>5.0 (87/1,744)</td>
</tr>
</tbody>
</table>

*Sample of ‘healthy persons’
Similarly, data from a population-based survey in Rwanda suggest that urban children aged 6–15 years had 8% of infections in urban persons six years and older (see Table 3; calculating 27% of the population aged 6–15 years and 50% aged 16 years and older). Limited data from rural Rwanda in 1986 and rural DRC in 1976 suggest even higher proportions of HIV in children (Table 3).

On the other hand, HIV prevalence in children 0–14 years old was much lower in Côte d’Ivoire in a population-based survey in 1987 and was zero in a number of studies in Gabon, Cameroon, Central Africa, Equatorial Guinea, and Uganda in 1985–87. Although some studies tested too few children to derive sound estimates, and findings vary from country to country, studies through 1988 suggest non-trivial numbers of non-vertically acquired HIV infections in African children. Without explicit evidence, it is not reasonable to attribute more than a small number of these infections to early sexual activity and child sexual abuse.

Prostitute women and STD patients

During 1984–88, researchers working principally through STD clinics conducted many studies of HIV in prostitutes (Table 4). A 1985 study in Nairobi reported health care exposures during the previous five years among 64 low- and 26 high-class prostitutes: 97% reported medical injections; 97% immunizations; 56% scarification; 29% surgical procedures; 21% dental extractions; 10% induced abortions; and 10% reported blood transfusions. Since almost all prostitutes reported medical injections, assessing risks from injections required detail on numbers of injections, which was regrettably not collected. Virtually all other studies of prostitute women and STD clinic visitors in Africa during 1984–88 either failed to collect information on injections, collected information only on injections received elsewhere (outside the study clinic), or failed to report collected information. Several studies even reported no association without providing the data, leaving readers clueless about trend.

Much of the evidence on sexual risks for HIV in studies of prostitute women is confusing or ambiguous. Many studies found little or no association between years in prostitution or numbers of partners per unit time and HIV prevalence (Table 4). Many studies reported one or more STD as a major risk, which could implicate either sexual transmission or the injections used to treat STD. Condom users had higher prevalence in one study. On the other hand, several studies reported that HIV infection was associated with lack of condom use and/or with hormonal birth control methods; these could implicate sexual transmission without condoms, injections to treat additional STD, hormonal enhancement of sexual transmission, or other risks.

Comparison of HIV prevalence and incidence in STD clinics with prevalence in general population studies suggests that risk for HIV infection was associated with clinic attendance (Table 4). In two STD clinics in Rwanda, HIV prevalence in attendees was four to nine times higher than in controls (general population samples). Among STD outpatients in Zambia in 1985, HIV prevalence in those reporting previous attendance at an STD clinic was 37% compared to 23% for first-time attendees. In another study in Zambia, 15% of HIV-negative STD patients seroconverted within two years. Among men attending an STD clinic in Nairobi in 1986–87 after recent contact with prostitute women, 8% seroconverted within an average 15 weeks of follow-up. Reported differences in HIV prevalence between clinic patients and controls and before and after STD treatment exceed differences in general population studies between persons with and without a history of STD. In 1985, among hospital and urban workers in Rwanda. HIV prevalence was only 1.4 times greater in persons reporting STD but no injections for STD in the past two years compared to persons reporting no STD (16.9% compared to 11.9%). Similarly, in a general population sample in Uganda in 1987, HIV prevalence in adults reporting STD in the past five years but no injections in the past year was only 1.6 times greater than for those reporting no STD or injections (10.6% compared to 6.8%).

Discussion

As detailed, published epidemiological evidence from 1984–88 in Africa shows higher average crude PAFs for HIV associated with injections than with measures of sexual exposure. Information on distribution of HIV infections according to sexual activity in adults from the general population shows most HIV in sexually less active adults. Studies of HIV in infants and children show significant numbers with proven or presumed non-vertically acquired infections, implicating medical transmission. A large number of STD-clinic-based studies of prostitute women and STD patients reported relatively high rates of HIV prevalence, but did not show consistent associations with sexual variables (except STD), and none of these studies provided data and analyses to resolve confounding between sexual and correlated health care exposures.

A straightforward reading of this evidence would say that both health care and sexual exposures were important channels for HIV transmission, with the balance depending on whether or not one put more weight on general population or supposed core group studies. However, interpretations of several sorts are inevitable. First, the quality of the evidence is an issue. One option is to assume that the evidence is
<table>
<thead>
<tr>
<th>Country, location, year</th>
<th>HIV prevalence in % or incidence per 100 PYs [cases/total]</th>
<th>General population</th>
<th>Selected sexual risk factors</th>
<th>Injections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostitutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Côte d’Ivoire, Abidjan, 1986<sup>56</sup></td>
<td>38% [38/101]<sup></sup> 3% [11/331 ANC women]<sup></sup></td>
<td>3% [11/331 ANC women]<sup>*</sup></td>
<td>Syphilis: 42% prostitutes vs 6% ANC women are TPHA+</td>
<td>No information</td>
</tr>
<tr>
<td>Côte d’Ivoire, Tortiya, 1986<sup>56</sup></td>
<td>29% [38/131]<sup></sup> 3% [1/34 ANC women]<sup></sup></td>
<td>5.9% ANC women<sup>18</sup></td>
<td>Syphilis: 51% prostitutes vs 6% ANC women are TPHA+</td>
<td>No information</td>
</tr>
<tr>
<td>DRC, Kinshasa, 1985<sup>57</sup></td>
<td>27% [101/377] 5.9% ANC women<sup>18</sup></td>
<td>Median number of lifetime partners: 600 for HIV+ vs 338 for HIV– PAF for no condom use last yr: <0% PAF for oral medications last yr: 38%</td>
<td>Reports no association w/injections last y, but gives no data</td>
<td></td>
</tr>
<tr>
<td>DRC, rural, 1986<sup>49</sup></td>
<td>11% [32/283] 2.2% [3/136 ANC women]<sup>*</sup></td>
<td>Mean sex partners/wk: 7.9 for HIV+ vs 8.3 for HIV–</td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>DRC, Kinshasa, 1988<sup>49</sup></td>
<td>35% [432/1,233] 4.8% [56/1,160 ANC women in 1990]<sup>60</sup></td>
<td>Mean sex partners/mo: 180 for HIV+ vs 54 for HIV–</td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>Kenya, Nairobi, 1981<sup>61</sup></td>
<td>4% [5/116] 0% [0/111 ANC women]<sup>*</sup></td>
<td>Mean yrs as prostitute: 0.7 for HIV+ vs 2.1 for HIV–</td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>Kenya, Nairobi, 1983<sup>61</sup></td>
<td>82% [32/39]</td>
<td></td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>Kenya, Nairobi, 1984–85<sup>61</sup></td>
<td>60% [219/362] 2.0% [22/1,100 ANC women in 1985]</td>
<td>Mean sex partners/mo: 123 for HIV+ vs 117 for HIV– Mean yrs as prostitute: 2.9 for HIV+ vs 2.6 for HIV–</td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>Kenya, Nairobi, 1985<sup>62</sup></td>
<td>66% [42/64 low class prostitutes] 2.0% [see above]</td>
<td>Sex acts/yr: 922 for HIV+ vs 1,042 for HIV–</td>
<td>95% of HIV+ vs 96% of HIV– women injected last 5 yrs 100% of HIV+ and HIV-women injected last 5 yrs No information (“Because this study was not designed to examine the epidemiology of HIV, data . . . were not collected . . .”)</td>
<td></td>
</tr>
<tr>
<td>Kenya, Nairobi, 1985<sup>62</sup></td>
<td>31% [8/26 high class prostitutes] 2.0% [see above]</td>
<td>Sex acts/yr: 143 for HIV+ vs 116 for HIV–</td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>Kenya, Nairobi, 1985<sup>63</sup></td>
<td>62% [259/418 low 2.0% [see above] class prostitutes]</td>
<td>Duration of prostitution: 35 mos for HIV+ vs 50 mos for HIV– Sex partners/day: 3.8 for HIV+ vs 3.6 for HIV– PAF for current oral contraceptive use: 6% PAF for current GU: 12% PAF for RPR/TPHA+: <0%</td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>Kenya, Nairobi, 1985–87<sup>64</sup></td>
<td>46 per 100 PYs [83/124]</td>
<td>PAF for oral contraceptive use: 10% PAF for no condom use: 49% Sex partners/day: 4.1 for seroconverters vs 3.3 for others GU episodes per year: 1.3 for seroconverters vs 0.5 for others</td>
<td>9% report injections or scarification outside research clinic during follow-up; PAF: 0%</td>
<td></td>
</tr>
<tr>
<td>Nigeria, Maiduguri, 1988<sup>65</sup></td>
<td>5% [19/353]</td>
<td></td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>Rwanda, Butare, 1983<sup>66</sup></td>
<td>74% [34/51] 12% [4/33 blood donor women]</td>
<td></td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>Rwanda, Butare, 1984<sup>66</sup></td>
<td>88% [29/33] 12% [4/33 blood donor women]</td>
<td></td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>Tanzania, Dar es Salaam, 1986<sup>67</sup></td>
<td>29% [65/224 women bar workers] 3.6% [7/192 ANC women]</td>
<td></td>
<td>No information</td>
<td></td>
</tr>
<tr>
<td>Uganda, SW roadside, 1986<sup>65</sup></td>
<td>68% [125/185 barmaids] 11% [11/103 Kampala ANC women]</td>
<td></td>
<td>No information</td>
<td></td>
</tr>
</tbody>
</table>

Continued
so bad that it cannot be used to prove anything that is not intuitively obvious (i.e., that disagrees with one’s preconceptions). However, the consistency of much of the evidence—despite some outliers that may reflect poor data or peculiar circumstances—argues against this approach. Second, after accepting the data, there are two major adjustments of crude risk measures that could dramatically impact conclusions about proportions of HIV from health care and sexual transmission: for direction of causation between injections and HIV; and for confound, especially correlations and confound between injections, STD, and prostitute contact.

Direction of causation

Faced with the frequently substantial PAFs associated with medical injections, acceptance by experts of the 1988 consensus that 90% of HIV transmission in Africa was of sexual origin made no sense unless one could attribute most of the association to reverse causation, i.e., to people seeking injections for HIV-related symptoms. Two contemporary studies attempted to make that case. A study among hospital workers in Kinshasa in 1984–86 reported no significant association between HIV incidence and injections after setting

Table 4. Continued

<table>
<thead>
<tr>
<th>Country, location, year</th>
<th>HIV prevalence in % or incidence per 100 PYs [cases/total]</th>
<th>Study population</th>
<th>General population</th>
<th>Selected sexual risk factors</th>
<th>Injections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola, Dundo, 1987–88</td>
<td>24% [48/204]*</td>
<td></td>
<td></td>
<td>Sex partners/mo: 1.5 for HIV+; 1.1 for HIV–</td>
<td>No information</td>
</tr>
<tr>
<td>Kenya, Nairobi, 1980</td>
<td>0% [0/118]</td>
<td></td>
<td></td>
<td></td>
<td>No information</td>
</tr>
<tr>
<td>Kenya, Nairobi, 1981</td>
<td>3% [2/70]</td>
<td></td>
<td></td>
<td></td>
<td>No information</td>
</tr>
<tr>
<td>Kenya, Nairobi, 1982</td>
<td>6% [4/68]</td>
<td></td>
<td></td>
<td></td>
<td>No information</td>
</tr>
<tr>
<td>Kenya, Nairobi, 1983</td>
<td>14% [13/93]</td>
<td></td>
<td></td>
<td></td>
<td>No information</td>
</tr>
<tr>
<td>Kenya, Nairobi, 1985</td>
<td>15% [29/194]</td>
<td></td>
<td></td>
<td></td>
<td>No information</td>
</tr>
<tr>
<td>Kenya, Nairobi, 1985</td>
<td>7.5% [3/40]</td>
<td></td>
<td></td>
<td></td>
<td>No information</td>
</tr>
<tr>
<td>Kenya, Nairobi, 1986</td>
<td>11% [38/340 men w/STD from prostitutes]</td>
<td></td>
<td></td>
<td></td>
<td>Most injected last 5 yrs, but no data</td>
</tr>
<tr>
<td>Kenya, Nairobi, 1986–87</td>
<td>29 per 100 PYs [24/293 men w/STD from prostitute] [cf: baseline prevalence: 12%]</td>
<td></td>
<td></td>
<td></td>
<td>Reports no association with injections last yr, but no data</td>
</tr>
<tr>
<td>Rwanda, Butare, 1984</td>
<td>28% [7/25 men w/recent prostitute contact]</td>
<td></td>
<td></td>
<td></td>
<td>11% report injections (outside research clinic?) during follow-up; PAF: < 0%</td>
</tr>
<tr>
<td>Rwanda, rural, 1985</td>
<td>29% [49/169]</td>
<td></td>
<td></td>
<td></td>
<td>No information</td>
</tr>
<tr>
<td>Tanzania, Dar es Salaam, 1986</td>
<td>10% [48/490]</td>
<td></td>
<td></td>
<td></td>
<td>No information</td>
</tr>
<tr>
<td>Uganda, Kampala, 1987</td>
<td>35% [95/270 dermatology and STD patients]</td>
<td></td>
<td></td>
<td></td>
<td>No information</td>
</tr>
<tr>
<td>Zambia, Lusaka, 1985</td>
<td>29% [41/139]</td>
<td></td>
<td></td>
<td></td>
<td>No information</td>
</tr>
<tr>
<td>Zambia, Lusaka, 1985–87</td>
<td>8.1 per 100 PYs [11/73]</td>
<td></td>
<td></td>
<td></td>
<td>No information</td>
</tr>
</tbody>
</table>

PY = person-years; mos = months; yrs = years; ANC = antenatal clinic; STD = sexually transmitted disease; TPHA = Treponema pallidum haemagglutination test; RPR = rapid plasma regain test; GU = genital ulcers; PAF = population attributable fraction; OR = odds ratio; RR = risk ratio; NA = not available; MSM = men who have sex with men

*Including HIV-2

†Risk information applies to Nairobi STD patients 1982–85

156 International Journal of STD & AIDS Volume 14 March 2003
aside six seroconverters with HIV-related symptoms. However, the data show a trend, and the PAF of HIV incidence associated with injections, calculated after setting aside six symptomatic seroconverters, is 21% (Table 1).20

In the second study, among hospital and urban workers in Rwanda, Van de Perre and colleagues argue that their data, showing a strong association between injections for STD or febrile illness and HIV status, but also showing no association between other injections and HIV, suggest that injections are not a risk—because HIV associated with injections for STD can be explained by subjects acquiring HIV through sexual contact during episodes of STD, while HIV associated with injections for febrile illness can be explained by people with HIV symptoms seeking injections22. This analysis is flawed, because injections for different symptoms may be given in different circumstances with greater or lesser risks. Importantly, data from this study show higher HIV prevalence among persons reporting injections for STD compared to persons reporting STD but no injections for STD (28.9 compared to 16.9%); if we assume that all reported STD have equal risks for HIV and equal probability of injection treatment, this difference shows risk from injections for STD without reverse causation (unfortunately, separate data are not available for ulcers, discharge, etc). If so, the PAF for HIV associated with injections for STD—net of reverse causation—is 20% (Table 1).22

Confounded

During the mid-1980s, Potterat, Vachon, Wycuff, Imperato, and others pointed out that associations between HIV and sexual variables could be confounded by medical exposures to treat STD, while others argued that the association between injections and HIV was confounded by sexual transmission during episodes of STD. As above, if we can assume that all reported STD have equal risks for HIV and equal probability of injection treatment, confounding between injections and STD—and vice versa—can be resolved by studies comparing HIV prevalence or incidence in (a) persons without STD, (b) persons with STD but without injections for STD, and (c) persons with injections for STD. Subtracting (a) from (b) shows enhanced risk for sexual acquisition of HIV while infected with STD; subtracting (b) from (c) shows risk from HIV associated with injections for STD. In two contemporary studies, data are available for at least partial application of this analysis (Table 1); there is, however, no indication that data were so analysed. In the 1985 Rwanda study discussed in the previous paragraph, the PAF of prevalent HIV associated with STD falls from 33% to 13% after adjusting for injections for STD as a confounding variable, and the adjusted PAF for HIV associated with injections for STD is 20%.22 In a 1987 study in Uganda, adjustment for all injections as a confound reduces the PAF for reported STD from 11% to 7%; the study was ‘unable to show a significant association with STD independent of injections received, although a trend was noted’27. In the same study, the crude PAF for all injections of 31% falls to 30% after stratified analysis across persons with and without STD. The authors also noted that ‘Injections in Uganda are often not given under aseptic conditions and themselves could theoretically be a vehicle of transmission’.

Most studies of prostitute women in Africa during this period reported HIV prevalence levels that were 5–10 times higher than levels among control women (usually antenatal clinics attendees). During the early 1980s, Nairobi was an exception, with rates in prostitutes more than 30 times higher than in control women. Such data do encourage interpretation of prostitutes and customers as core groups responsible for a large share of transmission, particularly in early epidemics. For example, if 1–2% of women are prostitutes with HIV prevalence 5–20 times higher than other women, they would account for 5–29% of HIV in women. And if each prostitute infected several men each year, one could expect high PAFs among men for prostitute contact. Comparing these calculations to findings from general population studies (Table 1), there is a good fit with one reported high PAF for prostitute contact—71% in Rwanda—but two other PAFs for prostitute contact are considerably lower (8% in Kinshasa and 28% in Zimbabwe). Furthermore, as already reported, 1980s general population studies showed only modest concentration of HIV in adults according to sexual activity. Finally, however important prostitutes and their patrons might be as a core group, questions remained unanswered about the modes of transmission: did they contract and transmit HIV via sexual intercourse or via reuse of injection equipment and multidose vials during STD treatment and antenatal care?

Deriving and defending consensus estimates

The post-1988 consensus that ascribed over 90% of adult HIV to heterosexual transmission and an insignificant proportion to unsafe injections was not at the time—or later—supported by calculations from evidence associating HIV with sexual behaviours. Instead, the numerical estimate seems to have been derived by a process of elimination. Most experts accepted available evidence that few African adults with HIV were MSMs or IDUs, so that most infections were assumed to derive from either sexual or health care exposures. The 90% estimate for adult HIV from sexual transmission hence rested on the belief that health care transmission was very low, despite abundant evidence to the contrary. For example, one 1988...
review of HIV in Africa stated counterfactually that ‘multiple heterosexual partners was the only major risk factor identified during epidemiological studies’76, and a 1989 review described evidence for health care transmission except by transfusion as ‘anecdotal or speculative’77. Weak analyses of direction of causation between injections and HIV and of confound between sexual and correlated parenteral risks encouraged discounting of evidence for iatrogenic transmission20,22. Experts may have also been lulled by reported low rates of HIV transmission to health care workers through needlestick accidents (through 1989, nine of 10 studies reported 0–0.47% transmission)78, although injections are deeper than most needlesticks and effectively wash the inside of a syringe and needle into the wound.

Influential epidemiologic reviews published between 1987 and 1990 presented a variety of inferential arguments and hypotheses to support consensus estimates of sexual transmission2,3,10,79. Their authors argued, for example, that near-parity in gender distribution of cases was evidence for sexual transmission. Why this should have been viewed as pathognomonic, when such parity was not often observed with truly sexually transmitted diseases such as gonorrhoea, syphilis, and genital herpetic, is puzzling. Another inferential argument was that little HIV was found outside sexually active age groups—an argument that did not agree with the evidence. These and other papers presented a number of hypotheses—high rates of partner change, more STD and more efficient HIV transmission in the presence of STD, lack of circumcision, genetic susceptibility to HIV infection, activated or depressed immune system—to explain how sexual transmission could be more important in Africa than in Western Europe. But that was not really the question; to argue that sexual transmission was more important in Africa was not at all the same as arguing that it was responsible for 90% of adult infections; ‘more important’ could mean 50% of adult infections, or even 20%, for that matter.

Insufficient attention to differential sexual risks

A number of early epidemiological investigations in Africa looked for HIV/AIDS associated with anal intercourse, both men with men and men with women2,3,8,62,66,67,69,80. Many reported only small numbers of infections linked to anal intercourse, which the post-1988 consensus has largely ignored. The importance of these behaviours may have been under-reported81,82. Since PAFs for multiple partners and prostitute contact measure HIV risks associated with all sexual contact (including anal intercourse) between men and women, misreporting of anal intercourse would have no impact on PAFs discussed in this paper for heterosexual exposures. However, if the proportion of adult infections from heterosexual transmission is much less than the 90% that has been assumed, any under-reporting of anal sex—which is much more dangerous than vaginal sex—becomes proportionately more important as a component of all sexual transmission, including sexual transmission among men. Hence, this is one issue where the consensus may have overlooked sexual risks.

Why was evidence ignored?

It has been said that people often see what they wish to see. Papers published around 1988 reveal a number of considerations that might have encouraged a mindset prepared to see heterosexual transmission as the driving force in Africa’s HIV epidemic. First, it was in the interests of AIDS researchers in developed countries—where HIV seemed stubbornly confined to MSMs, IDUs, and their partners—to present AIDS in Africa as a heterosexual epidemic; ‘nothing captured the attention of editors and news directors like the talk of widespread heterosexual transmission of AIDS’ (quoted from p. 51383). In a prominent 1988 article in *Science*, Piot and colleagues generalize with arguably more public relations savvy than evidence that ‘Studies in Africa have demonstrated that HIV-1 is primarily a heterosexually transmitted disease and that the main risk factor for acquisition is the degree of sexual activity with multiple partners, not sexual orientation’10.

Second, there may have been an inclination to emphasize sexual transmission as an argument for condom promotion, coinciding with pre-existing programmes and efforts to curb Africa’s rapid population growth. Third, ‘the role of sexual promiscuity in the spread of AIDS in Africa appears to have evolved in part out of prior assumptions about the sexuality of Africans’, as Packard and Epstein document in a regrettably ignored 1991 article84. Fourth, health professionals in WHO and elsewhere worried that public discussion of HIV risks during health care might lead people to avoid immunizations. A 1990 letter to the *Lancet*, for example, speculated that ‘a health message—eg, to avoid contaminated injection materials—will be misunderstood and that immunization programmes will be adversely affected’85. In short, tangential, opportunistic, and irrational considerations may have contributed to ignoring and misinterpreting epidemiologic evidence.

Conclusions

Our review of the evidence from 1984–88 suggests several conclusions. First, the post-1988 consensus that sexual transmission is responsible for 90% of adult HIV infections in Africa emerged despite, rather than from, the available evidence. Second, the consensus reflected poor management of research programmes and projects, since key
questions suitable for empirical resolution (e.g., direction of causation between injections and HIV, resolution of confound between injections and STD, and why HIV was often correlated with socioeconomic status) were settled with assumptions ‘unencumbered by data’ (in the words of a colleague).

Third, further delay in reopening and resolving the mid-1980s debate about the relative proportions of African HIV from sexual and health care exposures could have serious consequences for the trajectory of HIV epidemics in many African and Asian countries with nascent or continuing generalized HIV epidemics. Lastly, the emergence of the post-1988 consensus in the face of conflicting evidence serves as a warning to those who would reopen the debate: Now as then, experts may ignore evidence they do not want to see. Nevertheless, the climate for debate may well be different now than in 1988: more are infected; there is less optimism about vaccines; and there is less worry of the post-1988 consensus in the face of conflicting evidence.

Note: We have prepared this manuscript without any outside financial support and have no conflicts of interest in connection with this submission.

References

12 Wyatt HV. Injections and AIDS. Trop Doc 1986;16:97–8
13 Wycoff RF. Female-to-male transmission of AIDS agent [letter]. Lancet 1985;i:1017–18
21 Ryder RW, Ndili M, Hassig SE. Heterosexual transmission of HIV-1 among employees and their spouses at two large businesses in Zaire. AIDS 1990;4:725–32

(Accepted 16 December 2002)